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Background

IECM: A Tool for Analyzing 
Power Plant Design Options

• A desktop/laptop computer 
simulation model developed for 
DOE/NETLDOE/NETL  

• Provides systematic estimates of 
performance, emissions, costs and
uncertainties for preliminary design 
of:  

– PC, IGCC and NGCC plants
– All flue/fuel gas treatment systems
– CO2 capture and storage options 

(pre- and post-combustion, oxy-
combustion; transport, storage)

• Free and publicly available at:                  
www.iecm-online.com
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Current IECM Technologies for CCS 
(Version 8.0.2)

• CO2 Capture Options
– Pre-Combustion (IGCC):  

» Water gas shift + Selexol» Water gas shift + Selexol
» Chemical looping 

– Oxy-Combustion (PC)  
– Post-Combustion (PC, NGCC):        

» Amine systems (MEA, FG+)
» Chilled ammonia
» Membrane systems
» Auxiliary NG boiler or power plant (optional) y p p ( p )

• CO2 Transport Options
– Pipelines (six U.S. regions)

• CO2 Storage Options
– Deep Saline or Other Formations
– Enhanced Oil Recovery (EOR) 4



2

Advanced Capture Technology Models 
Under Development (Version 9.0)

Post-Combustion Capture
– Advanced membranes

Calcium looping– Calcium looping
– Solid sorbents

» Amine-based
» Activated carbon-based
» Metal organic frameworks

– Ionic liquids
Oxy-Combustion Capture

– Low-sulfur coals
Hi h lf l– High-sulfur coals

Pre-Combustion Capture
– Ionic liquids
– Chemical looping
– Sorbent-enhanced WGS
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• Ionic liquids (ILs) are among the new materials 
being developed for carbon dioxide (CO ) capture

Why Ionic Liquids for CO2 Capture?

being developed for carbon dioxide (CO2) capture 
because of their many favorable properties:

 Non-volatile
 High thermal stability
 High CO2 solubility and selectivity
 Endless tunability
 Both chemical and physical properties of ILs

Source: Maginn and 
Brennecke, 2010. Both chemical and physical properties of ILs          

may be “tailored” by varying their structure          
and/or chemical composition                            
(Gurkan et al 2010, 2013)
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,

• Current research on ILs is focused mainly on materials 
synthesis, laboratory experiments and molecular simulation 

Prior Research

of physical and chemical properties. 

• Few efforts have been made to analyze IL-based CO2
capture processes

– Trimeric Corporation (2012) conducted a techno-economic analysis                   
that indicated the economics of using ionic liquids for post-combustion        
CO2 capture is comparable to that of the amine-based process

– That analysis assumed the IL-based absorber tower had the same           
b b ki h i ht th MEA b Li id i itabsorber packing  height as the MEA base case; Liquid viscosity                   

was not utilized for any critical calculations 
– Capture equipment cost estimates in the MEA base case were increased         

by a factor of 2.01 to agree with those of the NETL Baseline Report
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• The main objectives of this study are to: 

Objectives of This Study

– Develop preliminary performance and cost models of                      
an IL-based process for post-combustion CO2 capture 
suitable for integration into the IECM framework

– Investigate system performance and cost for a current               
ionic liquid material

– Explore approaches to enhance the technology’s viability

8
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Techno-Economic Model

Techno-Economic Assessment Framework

Performance Model Cost Model
• CO2 capture 

efficiency • Direct capital 
• Indirect capitalFl fl

• Vessel size
• Lean/rich

• # of trains
• # of stages
• Lean solvent 

temperature 
and loading

• Temperature 
approach for  
heat exchanger

• Stripper temp. 

• Indirect capital 
• Interest charges 
• Royalty fees
• Preproduction 

cost
• Inventory 

capital
• Fixed and 

variable O&M

• Flue gas flow 
rate

• Flue gas 
pressure

• CO2 vol.%

• Lean/rich 
solvent flow 
rate

• Pressure 
drop

• Solvent 
makeup 

• CO2 product
• System 

power use

•Financing 
•U

nit cost factors

10

pp p

• Capital cost
• O&M cost
• Cost of 

capture 
($/tonCO2)

Schematic of Ionic Liquid-based 
CO2 Capture Process 

CO2 to compressor
CO2 lean

Reboiler

Heat 
exchanger

Cooler

Stripper

Absorber 

Flue gas CO2 rich

(~40 oC)

(~160 oC)

CO2 Pressure

Low Temp.

High Temp.(CO2 lean)

(CO2 rich)
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• The chemically tunable IL selected for this analysis is 
trihexyl-(tetradecyl)phosphonium 2-cyanopyrrolide 

Tunable Ionic Liquids for 
Post-Combustion CO2 Capture

([P66614][2-CNpyr]) synthesized by researchers at the 
University of Notre Dame

• This IL achieves a 1:1 and reversible chemical reaction 
with CO2, resulting in an efficient separation:

CO2 (g)  + [2−CNpyr –]  ↔  [2−CNpyr−CO2
–] (abs),  k1(T)Absorption:

12

CO2 (abs) ↔  CO2 (g),  H(T)

Regeneration:  [2−CNpyr−CO2
–] (abs) ↔ CO2 (g)  + [2−CNpyr –]

Source: Gurkan et al 2010



4

Property [P66614][2 CNpyr]* 30% MEA**

Solvent Properties:  IL vs. MEA

Property [P66614][2-CNpyr] 30% MEA
Molecular Weight (g/mole) 575 203
Heat Capacity @40oC (J/mole•oC) 1223 759
Viscosity @40oC (cp) 160 2.2
Surface Tension (mN/m) 30~40 48
Enthalpy of reaction (kJ/mole) -43 -84
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Source: * Gurkan et al. 2010;  ** Wilcox, J. (2012)..

CO2 Uptake Capacity 

• Maximum CO2 uptake 
(mole CO2 per mole IL) 
i di t d iis predicted using a 
Langmuir-type model 
as a function of CO2
partial pressure, Henry 
constant, and reaction 
equilibrium constant 
(Gurkan et al 2010):
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Isothermal Solubility of CO2
in [P66614][2-CNpyr] 

(Source: Gurkan et al 2010)

• Major assumptions:
– Absorption of CO2 is considered as a steady-state vapor-liquid 

process consisting of a number of equilibrium stages;

Multistage Equilibrium Process Model 
for Gas Absorption 

– CO2 is assumed to be the only component transferred from the        
gas phase to liquid phase (due to lack of multi-component data) 

• A multistage equilibrium model simulates the adiabatic 
absorption process, including mass balance (M),                
equilibrium (E), summation (S), and enthalpy balance (H). 

M:
Stage 1 F1

V1

15The Newton-Ralphson algorithm is applied to solve the MESH equations. 

S:

H:

E:
Stage j

Stage N

L1

LN

FN

VN

:

:

:

:

• Absorber height is estimated in terms of the overall gas-phase 
mass transfer coefficient, in which the liquid-phase physical 
mass transfer coefficient is adjusted by an enhancement factor 

Mass Transfer in Gas Absorption 

j y
reflecting the reaction kinetics:

• The physical mass transfer coefficients of gas and liquid phases 
are estimated using empirical mass transfer correlations 
developed by Onda et al. for randomly packed columns:

Interfacial area :

16

Interfacial area :

Gas-phase mass transfer:

Liquid-phase mass transfer:
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• Since no water is used to dilute the solvent, and there are 
no solvent vapor losses, a single-stage vessel in equilibrium

Solvent Regeneration 

no solvent vapor losses, a single stage vessel in equilibrium 
is employed for the stripping process

• The thermal energy requirements for solvent regeneration 
mainly include the solvent heating and enthalpy of reaction

• The size of the stripper is determined using empiricalThe size of the stripper is determined using empirical          
vapor velocity and liquid surge time designs
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Case Study Results

Performance Parameter Units Value
Flue gas flow rate kmole/hr 94 980

Case Study Assumptions for 90% CO2
Capture  at a 650 MWg Coal-Fired Plant

Flue gas flow rate kmole/hr 94,980
Number of trains # 4
CO2 in flue gas mol. fraction 0.12
Flue gas temperature oC 40
Lean solvent temperature oC 40
Absorber pressure* bar 1.0
Number of equilibrium stages # 5
CO2 in lean solvent mol. fraction 0.050
Temp. approach, rich/lean heat exchg. oC 5
Stripping temperature oC 160
CO2 product pressure bar 153

19

* Based on Sherwood/Leva/Eckert correlation  

Parameter Unit Value
CO2 concentration in rich solvent stream mol. fraction 0.19

Preliminary Performance Results for an    
IL-based System for 90% CO2 Capture

Lean solvent flow rate per train kmole/hr 15,232
Liquid-to-gas ratio mole ratio 0.64
Pressure drop across absorber kPa 12
Absorber height m 45.5
Absorber diameter m 11.1
Stripping pressure bar 1.03
Stripper height m 27.1
Stripper diameter m 8.7pp
Steam use for solvent regeneration kJ/kg CO2 3627
Steam use, electrical equivalent MW 113.9
Total equipment power use MW 68.7
Net power plant efficiency HHV, % 27

20
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Cost Parameter Units Value
Cost year Constant US $ 2011

Case Study Assumptions for 90% CO2
Capture at a 650 MWg Coal-Fired Plant

Capacity factor % 75
Fixed charge factor fraction 0.113
Construction time yr 3
General facilities % PFC 10
Engr. & overhead fees % PFC 7
Project contingency % PFC 30*
Process contingency % PFC 30*
Misc capital cost %TPI 2Misc. capital cost %TPI 2
Inventory capital %TPC 0.5
Total maintenance cost %TPC 2.5
Labor fee $/hr 34.65
Solvent makeup cost $/t 10,000

21

* Reflects first-of-a-kind (FOAK) costs

Parameter Unit Value

Preliminary Cost Results for First-of-a-Kind 
(FOAK) Plant with 90% CO2 Capture

Parameter Unit Value

Total capital requirement 2011$/kW 2,637
Fixed O&M cost 2011$/MWh 10.5
Variable O&M cost 2011$/MWh 10.6
Total O&M cost* 2011$/MWh 21.1
Cost of CO2 captured ** 2011$/t 62.4

22

* This item does not include CO2 transport and storage costs.
** Estimated as the total annualized cost divided by the total mass of CO2 captured.

Alternative Cases

• Process Operating Design
– Lean solvent temperature 

Sensitivity Analyses for IL-based CO2
Capture: Performance Variables

– Lean solvent loading
– Stripping temperature 

• Solvent Properties
– Viscosity
– Heat capacity

• CO2 Removal Efficiency
• Cost and Financial Factors

– Contingency costs
– Fixed charge factor

24
Full details are available in the preprint. The following slides show a few of those results.
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Effects of CO2 Removal Efficiency on 
Process Design Parameters
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Effect of Contingency Costs and                  
Fixed Charge Factor on Cost of CO2 Captured

80 These factors will be lower 
for an Nth-of-a-kind (NOAK) 
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Conclusions

• The preliminary results for the case study IL showed that the most 
cost-effective “cost of CO2 captured” occurred at a removal efficiency 
of about 85%

Conclusions

of about 85%
• The overall cost of capture is higher than the U.S. DOE’s cost target of 

$40/t for new technologies, mainly due to high capital cost of vessels. 
However, current process designs for IL systems are not yet 
optimized.

• Improvement in solvent properties would improve the technology’s 
viability.
Th i t f th fl tit t h lf d t• The impacts of other flue gas constituents such as sulfur and water 
vapor remain to be studied and could alter conclusions shown here. 

• Other important cost metrics for such as added LCOE and CO2
avoidance cost will be reported in future cost assessments.
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